The diameter of a random Cayley graph of Z q
نویسنده
چکیده
Consider the Cayley graph of the cyclic group of prime order q with k uniformly chosen generators. For fixed k, we prove that the diameter of said graph is asymptotically (in q) of order k √ q. The same also holds when the generating set is taken to be a symmetric set of size 2k.
منابع مشابه
SOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH
In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...
متن کاملEigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset
Set X = { M11, M12, M22, M23, M24, Zn, T4n, SD8n, Sz(q), G2(q), V8n}, where M11, M12, M22, M23, M24 are Mathieu groups and Zn, T4n, SD8n, Sz(q), G2(q) and V8n denote the cyclic, dicyclic, semi-dihedral, Suzuki, Ree and a group of order 8n presented by V8n = < a, b | a^{2n} = b^{4} = e, aba = b^{-1}, ab^{...
متن کاملCOMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملThe diameter of a random Cayley graph of ℤ q
Consider the Cayley graph of the cyclic group of prime order q with k uniformly chosen generators. For fixed k, we prove that the diameter of said graph is asymptotically (in q) of order k √ q. This answers a question of Benjamini. The same also holds when the generating set is taken to be a symmetric set of size 2k.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009